Matematika

Pertanyaan

Tentukan jumlah 5 suku pertama pada deret geometri 3+3/2=3/4+..........

1 Jawaban

  • Diketahui :
    a = U₁
    b = U₂ - U₁
    r  = U₂/U₁

    Un = a + (n - 1)b.
    Sn = n/2.(2a + (n - 1)b)



    Ditanya :
    S₅ = ???

    Dijawab :
    ⇔ n = 5

    ⇔ a = U₁
           = 3

    ⇔ b = 3/2 - 3
    ⇔ b = 3/2 - 6/2
    ⇔ b = -3/2

    ⇔ r = U₂/U₁
    ⇔ r = (3/2)/3
    ⇔ r = 3/(2.3)
    ⇔ r = 3/6
    ⇔ r = 1/2

    deret aritmatika
    Sn = n/2.(2a + (n - 1)b)
    S₅  = (5/2).(2.3 + (5-1).(-3/2)
         = (5/2).(6+ (4.-3/2))
         = (5/2).(6+(-12/2))
         = (5/2).(6-6)
         = (5/2).(0)
         = 0

    deret geometri
    S₅  = (3*(1-(1/2)^(5))/(1-(1/2))
    S₅  = (3*(-(1/2)^(5))/(1/2)
    S₅  = (3*(-(1/32))/(1/2)
    S₅  = (3*2)(-(1/32)+1)/1
    S₅  = (6)((32/32)-(1/32))
    S₅  = (6)(31/32)
    S₅  = (186/32)
    S₅  = (93/16)

    Jadi jumlah 5 suku pertama pada deret geometri tersebut adalah 93/16

Pertanyaan Lainnya